Численные методы MATLAB

Оригинал - это исходный объект свойства, которого исследуются методом моделирования Математическая модель - это математическое описание параметры, которого соответствуют определенным параметрам объекта-оригинала

 

Описание системы ОДУ

Можно использовать m-файл типа odefunction (или m-file типа odefile для совместимости с прежними версиями, но последний случай мы рассматривать не будем, чтобы определить систему дифференциальных уравнений в одной из явных (первая формула) или неявных форм:

y'= F(t, у), My' = F(t, у) или M(t)y' = Y(t, у),

где t — независимая переменная (скаляр), которая обычно представляет время; у — вектор зависимых переменных; F — функция от t и у, возвращающая вектор-столбец такой же длины как и у; М и М(£) — матрицы, которые не должны быть вырожденными. М может быть и константой.

Рассмотрим пример решения уравнения вида

Оно сводится к следующей системе уравнений:

Подготовим m-файл ode-функции vdp.m:

function [outl.out2.out3] = vdp(t.y.flag)

if nargin < 3 | isempty(flag)

outl = [2.*y(2).*(l-y(2). ^ 2)-y(1); y(1)];

else

switch(flag)

case 'inlt' % Return tspan. y0 and options

out1 = [0 20];

out2 = [2; 0];

out3 = [ ];

otherwise

error([' Unknown request ''' flag '''.']);

end

end

Тогда решение системы с помощью решателя ode23 реализуется следующими командами:

» [T.Y] = ode23(@vdp.[0 20]. [2 0]);

Еще проще работать с решателями нового поколения. Рассмотрим систему уравнений: y'+abs(y)=0; y(0)=0; у(4)=-2.

Для решения в пределах отрезка [0; 4] с помощью bvp4c достаточно привести эту систему к виду: y'=-abs(y), y(0)=0; у(4)+2=0. Затем -создаем две ode-функции: twoode и twobc в разных m-файлах:

function dydx = twoode(x,у) 

dydx = [ у(2)

-abs(yd))];

function res = twobc(ya.yb) res = [ ya(l)

yb(l) + 2];

Теперь наберите в командной строке type twobvp и посмотрите само решение уравнения, которое содержится в уже имеющемся в системе файле twobvp. А исполнив команду twodvp, можно наблюдать результат решения в виде графиков. В решении вы найдете структуру узлов начальной сетки решения, которая поясняется ниже.

Рекомендуется просмотреть также пример mat4bvp и дополнительные примеры решения систем дифференциальных уравнений, приведенные в файле odedemo. Во многих случаях решение задач, сводящихся к решению систем дифференциальных уравнений, удобнее осуществлять с помощью пакета расширения Simulink.

 

Атомная промышленость. Лекции по физике, математике, информатике MATLAB пакет прикладных программ для решения задач технических вычислений