Математика Комплексные числа

 

 Определениё комплексного числа.

Комплексным числом  будем называтьупорядоченную пару действительных чисел , записанную в форме , где - новый объект ("мнимая единица"), для которого при вычислениях полагаем .

 Первая компонента комплексного числа , действительное число , называется действительной частью числа , это обозначается так: ; вторая компонента, действительное число , называется мнимой частью числа : .

Тригонометрическая форма комплексного числа. Запись комплексного числа в виде называется алгебраической формой комплексного числа. Изобразим число  как точку на плоскости с декартовыми координатами . Если теперь перейти к полярным координатам , то , поэтому . Угол  называется аргументом комплексного числа   и обозначается : . Аргумент комплексного числа определён неоднозначно (с точностью до слагаемых, кратных ): если, например, , то значения , равные   и т.д. тоже будут соответствовать числу , поэтому значение аргумента, удовлетворяющее условиям , будем называть главным;  для обозначения всех значений аргумента комплексного числа   применяется символ : .

Многочлены -ой степени.

Многочлены с комплексными коэффициентами от комплексной переменной. Многочленом -ой степени называется функция  где  - постоянные комплексные числа (коэффициенты многочлена), ,  - комплексная переменная. Число , в котором многочлен принимает нулевое значение (), называется корнем многочлена.

 Справедлива следующая теорема, которая называется основной теоремой алгебры: любой многочлен степени  имеет комплексный корень.

Пусть   - произвольная точка комплексной плоскости. Представим  в виде многочлена по степеням  (как мы делали это в разделе 7.7.1. Формула Тейлора для многочленов):

Рациональные функции и их разложение в сумму простых дробей.

Определение рациональных функций и простых дробей. Рациональной функцией называется отношение двух многочленов

.

Здесь и дальше мы снова будем работать только с действительной переменной , коэффициенты обоих многочленов - действительные числа, , . Рациональная функция (дробь) называется правильной, если ; если , рациональная дробь называется неправильной.

Атомная промышленость. Лекции по физике, математике, информатике MATLAB пакет прикладных программ для решения задач технических вычислений