Математика Дифференцируемость функций

 

Определение производной функции. Задачи, приводящие к понятию производной.

Определение производной. Пусть функция y=f(x) определена в точке х и некоторой её окрестности. Придадим значению аргумента х приращение Dх (положительное или отрицательное, но не выводящее за пределы этой окрестности) и найдем соответствующее приращение функции Dу=f(x+Dх)- f(x). Передел отношения приращение функции Dу к приращению аргумента Dх при Dх ®0 называется производной функции y=f(x) в точке х.

Производная обратной функции.

Вывод формул производных функций  и .

Пусть для f(x): 1. выполняются условия Теор.5.6.5 об обратной функции (непрерывность и строгая монотонность на отрезке [a,b]). 2. в точке х0 существует неравная нулю производная f'(х0). Тогда обратная функция х = g(у) в точке у0= f(х0) также имеет производную, равную .

Основные правила дифференцирования.

 Здесь мы выведем основные формулы, применяющиеся при нахождении производных - формулы для производных суммы, произведения, частного и т.д. Значение функции в точке х+Dx нам удобно будет представлять в виде у(х+Dx)= у(х)+ Dу= у(х)+ у'(x) Dх + a(Dх) Dх, где a(Dх) - БМ при Dх ®0, следующим из определения для приращения функции: Dу = у(х+Dx)- у(x).

Примеры вычисления производной.

 вывод формул производных функций, в которых применяются только арифметические действия, обычно не представляет трудностей:

Односторонние и бесконечные производные.

 В этом разделе будут рассмотрены особые случаи, которые могут встретиться при нахождении производных.

Односторонние производные. Пусть х - правый или левый конец [a,b] отрезка, на котором определена функция. Тогда при вычислении предела отношения  в точке а мы можем рассматривать только случай , в точке b - только случай , т.е. искать односторонние пределы. Соответственно, полученные производные называются односторонними производными справа или слева. Графики функции будут иметь в этих случаях односторонние касательные.

Правила для вычисления дифференциала. Примеры вычисления дифференциала. Правила для вычисления дифференциала - прямое следствие правил дифференцирования (раздел 6.5):

Производные функций, заданных параметрически и неявно.

Производные функций, заданных параметрически. Пусть зависимость у от х задана через параметр t: , обе эти функции дифференцируемы, и для первой из них существует обратная функция . Тогда явная зависимость у от х выражается формулой. Находим производную: . Здесь мы воспользовались результатами разделов 6.5.5. Производная сложной функции и 6.3. Производная обратной функции. То же выражение можно получить из 6.8.2. Инвариантности формы первого дифференциала: .

Производные и дифференциалы высших порядков.

роизводные высших порядков. Формула Лейбница. Пусть функция  имеет производную y'(x) в каждой точке интервала (а,b). Функция y'(x) тоже может иметь производную в некоторых точках этого интервала. Производная функции y'(x) называется второй производной (или производной второго порядка) функции и обозначается . Функция y''(x) тоже может иметь производную, которая  называется третьей производной (или производной третьего порядка) функции и обозначается . Вообще n-ой производной (или производной n-ого порядка) функции называется производная от производной n-1-го порядка (обозначения: ).

Основные теоремы дифференциального исчисления.

  В этом и следующем разделах будет исследован вопрос: какую информацию о поведении функции f(x) можно получить, если известны производные этой функции?

Теорема Ферма.

Теорема Ролля

 Пусть функция f (х): 1. непрерывна на отрезке [a,b]; 2. дифференцируема в каждой точке интервала (a,b); 3. принимает на концах отрезка равные значения: f(a) = f(b).

 Тогда на интервале (a,b) найдётся точка с, в которой производная функции равна нулю: f '(с) = 0.

 Док-во. f (х) непрерывна на [a,b], поэтому, по Теор.5.6.4 о достижении минимального и максимального значений, принимает на этом отрезке своё наименьшее m и наибольшее M значения. Возможны случаи: 1. m = M. Это означает, что функция постоянна на [a,b]: f (х) = m = M. Тогда в каждой точке сÎ[a,b]

Теорема Коши. Пусть функции f (х) и g (х): 1. непрерывны на отрезке [a,b]; 2. имеют производные f '(x) и g'(х) на интервале (a,b); 3. g'(х) ¹ 0 на интервале (a,b). Тогда на интервале (a,b) найдётся точка с (a<с<b), в которой .

 Док-во. Отметим предварительно, что g(b) ¹ g(a) (иначе по теореме Ролля нашлась бы точка сÎ(a,b), в которой g '(с) = 0, что противоречит условию теоремы), так что дробь в правой части формулы Коши имеет смысл. Рассмотрим функцию . Эта функция удовлетворяет условиям теоремы Ролля (проверить!), поэтому $ сÎ(a,b), в которой F '(с) = 0. , поэтому в точке с , т.е. , что и требовалось доказать.

 Легко убедиться, что теорема Лагранжа - частный случай теоремы Коши при .

Сравнение скорости роста логарифмической, степенной и показательной функций при .

 Ниже приводятся примеры применения правила Лопиталя для раскрытия неопределённостей. Подчеркнём, что в теоремах Лопиталя предполагается существование предела отношения производных, поэтому бессмысленно пытаться применить это правило к раскрытию, например, следующей неопределённости:

Неопределённость как и в разделе 4.5.3.2. легко свести к неопределённости  или : пусть f(x)®¥, g(x)®0 при х®а. Тогда представление даст неопределённость , представление даст неопределённость . Пример:

Формула Тейлора для многочленов. Рассмотрим следующую простую задачу. Дан многочлен по степеням х: . Требуется представить функцию Р3(x) в виде многочлена по степеням (x+2). Решение: представим х в виде (х+2)-2. Тогда

Решим эту задачу по другому: попытаемся выразить коэффициенты разложения многочлена по степеням (x+2) через производные функции Р3(x).

Форма Пеано остаточного члена формулы Тейлора.

Пусть для функции Rn(x) существуют все производные вплоть до n-го порядка и выполняются условия . Тогда при  эта функция является бесконечно малой выше n-го порядка по сравнению с х- х0.

Представление по формуле Маклорена элементарных функций.

. В этом случае , поэтому

, 0<q<1.

2. . В этом случае все производные чётного порядка равны при х = 0, производные нечётного порядка:  при х = 0, поэтому

Применение формулы Тейлора для нахождения пределов и приближённых вычислений.

Нахождение пределов с помощью формулы Тейлора. Рассмотрим примеры:

. Так как в знаменателе стоит х5, то при представлении функций, стоящих в числителе, по формуле Маклорена, мы должны брать многочлены не ниже пятой степени: ;  (следующий член разложения имеет шестую степень)

Атомная промышленость. Лекции по физике, математике, информатике MATLAB пакет прикладных программ для решения задач технических вычислений