Векторная и линейная алгебра и аналитическая геометрия Контрольная работа

Задача 15. Вычислить

Решение. Разложим подынтегральную функцию в сумму простейших дробей. Множителю  будет соответствовать сумма  множителю   - дробь . Тогда получим разложение

Приведем правую часть равенства к общему знаменателю  и приравняем числители получившихся дробей:

Найдем А, В, С, D. Согласно методу частных значений

(см. задачу 14) полагаем , тогда равенство примет вид  откуда . Далее применяем метод неопределенных коэффициентов, приравнивая коэффициенты при одинаковых степенях слева и справа.

Так, для х получим равенство  откуда ; для  имеем , откуда ; для  получим , откуда

Итак,

Вычисляем интеграл

Задача 16. Вычислить , если l задана уравнением

Решение. Воспользуемся формулой (27) вычисления криволинейного интеграла I рода для кривой, заданной в полярных координатах:

Получим

Согласно формуле (20)

Тогда

Задача 17. Найти массу дуги кривой , если плотность кривой 

Решение. Применяем формулу (28) вычисления массы дуги с помощью криволинейного интеграла I рода:

Формула (25) позволяет преобразовать криволинейный интеграл в определенный:

Так как , получаем

ОСНОВНЫЕ ЗАДАЧИ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ Основной метод аналитической геометрии - метод координат. Его сущность: каждой точке М поставлены в соответствие пара или тройка чисел, называемых ее координатами. Каждой фигуре поставлено в соответствие уравнение F(x,у)=0 или F(x,у,z)=0. Отсюда возникают две основные задачи аналитической геометрии: 1) по геометрическому свойству фигуры составить ее уравнение; 2) по уравнению исследовать свойства и форму геометрической фигуры.
Приложения кратных, криволинейных и поверхностных интегралов