Векторная и линейная алгебра и аналитическая геометрия Контрольная работа

Задача 6. Вычислить .

Решение. Это интеграл вида .

Одно из чисел m и n нечетное (в данном случае ), поэтому интеграл можно вычислить следующим образом. Преобразуем подынтегральное выражение

, следовательно, можно выполнить замену: .

В результате получим

Задача 7. Вычислить .

Решение. Это интеграл вида  с чётными m и n (в данном случае ). Воспользуемся формулой (19) понижения степени

,

получим

Задача 8. Вычислить .

Решение. Применяя тригонометрическую формулу (23)

,

получим

Задача 9. Вычислить .

Решение. Выделим в числителе производную от знаменателя:

Первый интеграл вычисляем, сделав замену , тогда . Имеем

Второй интеграл преобразуем, выделив в знаменателе полный квадрат: . Тогда с учетом формулы (14) получим

Итак, исходный интеграл равен

Задача 10. Вычислить .

Решение. Выделим в числителе производную подкоренного выражения

Первый интеграл вычисляется путем замены , тогда  Имеем

Второй интеграл преобразуем путем выделения полного квадрата в подкоренном выражении:

 

Тогда с учетом формулы (16) получим

Следовательно, исходный интеграл равен

ОСНОВНЫЕ ЗАДАЧИ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ Основной метод аналитической геометрии - метод координат. Его сущность: каждой точке М поставлены в соответствие пара или тройка чисел, называемых ее координатами. Каждой фигуре поставлено в соответствие уравнение F(x,у)=0 или F(x,у,z)=0. Отсюда возникают две основные задачи аналитической геометрии: 1) по геометрическому свойству фигуры составить ее уравнение; 2) по уравнению исследовать свойства и форму геометрической фигуры.
Приложения кратных, криволинейных и поверхностных интегралов